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In a pre-test–post-test cluster randomized trial, one of the methods commonly used to

detect an intervention effect involves controlling pre-test scores and other related

covariates while estimating an intervention effect at post-test. In many applications in

education, the total post-test and pre-test scores, ignoring measurement error, are used

as response variable and covariate, respectively, to estimate the intervention effect.

However, these test scores are frequently subject to measurement error, and statistical

inferences based on the model ignoring measurement error can yield a biased estimate of

the intervention effect. When multiple domains exist in test data, it is sometimes more

informative to detect the intervention effect for each domain than for the entire test. This

paper presents applications of the multilevel multidimensional item response model with

measurement error adjustments in a response variable and a covariate to estimate the

intervention effect for each domain.

1. Introduction

Pre-test–post-test cluster randomized trials are common in educational intervention

studies because researchers cannot control students’ class assignment, although random

assignment sometimes occurs at the student level as well (Raudenbush, 1997). Thus,

study designs have multilevel data in which teachers, classes or schools are randomly

assigned to intervention. One of the commonly used methods for detecting an

intervention effect involves controlling pre-test scores and other related covariates when
estimating the intervention effect at post-test (e.g., Aitkin & Longford, 1986; Goldstein,

2003, ch. 2).

Students’ ability scores at pre-test and post-test are vulnerable to measurement error,1

and ability is often measured with a set of items. It has been shown that ignoring

measurement error in a response variable (i.e., post-test scores) and a covariate (i.e., pre-

test scores) leads to biased parameter estimates. The bias is due to attenuation from

measurement error in the response variable (e.g., Carroll, Ruppert, Stefanski, &

Crainiceanu, 2006, ch. 15; Fox, 2004). Measurement error in the covariate is also
responsible for biased parameter estimates and loss of power to detect relationships

among variables (Bryk & Raudenbush, 1992; Carroll et al., 2006; Fox & Glas, 2003;

Goldstein, Kounali, & Robinson, 2008; Rabe-Hesketh, Skrondal, & Pickles, 2004). In

*Correspondence should be addressed to Sun-Joo Cho, Peabody College of Vanderbilt University, 230 Appleton
Place, Nashville, TN 37203-5721, USA (email: sj.cho@vanderbilt.edu).
1 In this study, we use the term ‘measurement error’ to refer to random measurement error, not systematic
measurement error.
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detecting an intervention effect controlling pre-test scores, the effects of pre-test scores

can be biased in the presence ofmeasurement error in pre-test scores (e.g., L€udtke,Marsh,

Robitzsch, & Trautwein, 2011). However, for the intervention effect, previous research

has shown that covariate measurement error is a problem only for non-experimental
designs with groups that differ in average covariate value in analysis of covariance (e.g.,

Culpepper & Aguinis, 2011; Porter & Raudenbush, 1987). When there is no group

difference in pre-test scores, bias in the intervention effect estimatemay not be of concern

in the presence of measurement error in pre-test scores (Cho & Preacher, 2015). The

assumption that there is no group difference in pre-test scores must be tested. Item

response models can be used to model the relationship between ability and the set of

individual items when ability cannot be measured perfectly.

In addition, students’ outcomes in the evaluation of intervention studies often involve
multiple domains even though the test is supposedly unidimensional. The multiple-

domain design provides the possibility of detecting intervention effects for each domain

and thus facilitates diagnostic interpretations of the results. To do so, separate

unidimensional item response models can be fitted to obtain item response theory

(IRT) scale scores and an intervention effect on the scale of each domain. However, this

approach can lead to inaccurate results when the number of test items related to each

domain is small (e.g., de la Torre, Song, & Hong, 2011).

Multilevel multidimensional item response models (MMIRMs; Muth�en & Asparouhov,
2013; Rabe-Hesketh et al., 2004) allow for explicitly modelling measurement error and

IRT subscoring for multilevel data. The MMIRM provides the opportunity to model latent

variables with multiple observed items to reduce the effects of measurement error. In

addition, multiple latent variables for multiple domains are modelled, and the linear

relationship between the domain-specific latent variables can be obtained at each level of

multilevel data in the MMIRM.

Measurement error adjustment is achieved by applying the MMIRM to response

variables and covariates. Up to this point, MMIRMs have been mainly applied to response
variables (see Muth�en & Asparouhov, 2013, sections 7 and 8). There are examples of

researchers correctly accounting for measurement error in covariate(s) using unidimen-

sional item response models (Battauz & Bellio, 2011; Fox & Glas, 2003). There are also a

few examples of measurement error adjustment in response variables and covariates.

Raudenbush and Sampson (1999) used a multilevel Rasch model to control for

measurement error in both response variables and covariates. Rabe-Hesketh et al.

(2004, equation 18, p. 180) specified the linear predictor in a generalized linear model for

measurement error adjustment in response variables and covariates in multilevel data.
When ameasurementmodel is specified for both response variables (i.e., post-test scores)

and covariates (i.e., pre-test scores), latent variables for the covariates are used to explain

latent variables for response variables at each level of the multilevel data. This makes

symmetric score mapping possible between post-test scores and pre-test scores.2

However, to our knowledge, the multidimensional specification of the linear predictor

with a logit link or probit link (two-parameter MMIRM) has not been applied to adjust

measurement error in a response variable and a covariate.

When anMMIRM as a latent covariate 3 (i.e., a pre-test model) is added to anMMIRM as
a response variable (i.e., a post-testmodel), othermanifest covariates including a grouping

2The authors thank the reviewerof aprevious versionof this paper for clearlypointingout thismodelling feature.
3We define the term latent covariate as a covariatemeasuredwithmeasurement error, in contrast to amanifest

covariatemeasured without measurement error.
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variable for the intervention (i.e., a control group vs. a treatment group) and demographic

variables can be added to account for the ability parameters of the post-test model in a

structural model. All parameters in themeasurementmodels and the structuralmodel can

be estimated simultaneously in explanatory item responsemodelling (DeBoeck&Wilson,
2004) or generalized multilevel structural equation modelling (McDonald, 1993; Muth�en,
1994; Rabe-Hesketh et al., 2004).

The purpose of this paper is to present a model specification that includes a two-

parameter MMIRM inwhich measurement error is corrected for a response variable and a

covariate at each level of the multilevel data structure. The MMIRM in this study is an

MMIRM with a multilevel latent covariate (MMIRM-MLC). The rest of this paper is

organized as follows. First,we specify anMMIRM-MLC and describe parameter estimation.

Then we present an empirical study for applications of the MMIRM-MLC, followed by a
simulation study to evaluate an MMIRM-MLC and to compare its performance with other

approaches using the total scores. We conclude with a summary and discussion.

2. MMIRM with a multilevel latent covariate

In this section an MMIRM-MLC is described, with a measurement model and a structural
model, for binary responses. Crossed and nested data structures are possible in multilevel

item response data at pre-test and post-test. If every item is offered to all individuals and

every individual responds to all items, the item and individual classifications are found at

the same level, and they are crossed. In addition to the crossed design, there is amultilevel

design in which individuals (e.g., students) are nested with clusters (e.g., teachers). To

frame this data structure within themultilevel literature (e.g., Bryk & Raudenbush, 1992),

item responses at level 1 are cross-classified with individuals and items at level 2.

Individuals are nested within clusters at level 3. The model description is limited to a
between-item design in which an item is loaded on one dimension or latent variable for

subscoring.

Ameasurementmodel, an MMIRM, for correct item responses at post-test (denoted by

a subscript 2) is as follows, assuming that there is no evidence of measurement bias

regarding clusters and groups (e.g., control and treatment groups):

Pðy2jki ¼ 1jh2jk; h2kÞ ¼ U½a2i � ðh2jk þ h2kÞ � b2i�; ð1Þ

whereΦ denotes the standard normal cumulative distribution function, j is an index for an

individual ( j = 1,. . ., J ), k is an index for a cluster (k = 1,. . .,K), i is an index for an

item (i = 1,. . ., I ), d is an index for a dimension (i.e., domain) (d = 1,. . .,D ),

y2jki = [ y2jki1,. . ., y2jkid,. . ., y2jkiD]
0 are item responses across domains at post-test,

h2jk(D 9 1) = [h2jk1,. . ., h2jkd,. . .,h2jkD]0 are multidimensional latent variables at level 2,
h2k(D 9 1) = [h2k1,. . ., h2kd,. . .,h2kD]0 are multidimensional latent variables at level 3, a2i

(I 9 D) are item slopes or item discrimination parameters at post-test, and b2i(I 9 D)

are item intercepts or item difficulty parameters at post-test. h2jk and h2k are assumed

to follow a multivariate normal distribution, h2jk � MN(0(D 9 1),Σ1(D 9 D)) and

h2k � MN(0(D 9 1),Σ2(D 9 D)), respectively.

Ameasurementmodel, anMMIRM, for correct item responses at pre-test (denoted by a

subscript 1) is as follows, assuming that there is no evidence of measurement bias

regarding clusters and groups:
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Pðy1jkijh1jk; h1kÞ ¼ U½a1i � ðh1jk þ h1kÞ � b1i�; ð2Þ

where y1jki = [y1jki1,. . ., y1jkid,. . ., y1jkiD]
0 are item responses across domains at pre-test,

h1jk(D 9 1) = [h1jk1,. . .,h1jkd,. . .,h1jkD]0 are multidimensional latent variables at level 2, h1k

(D 9 1) = [h1k1,. . .,h1kd,. . .,h1kD]0 aremultidimensional latent variables at level 3, a1i(I 9 D)

are item slopes or item discrimination parameters at pre-test, and b1i(I 9 D) are item

intercepts or item difficulty parameters at pre-test. h1jk and h1k are assumed to follow a

multivariate normal distribution, h1jk � MN(0(D 9 1),Σ3(D 9 D)) and h1k � MN

(l(D 9 1),Σ4(D 9 D)), respectively, where l(D 9 1) = [l1,. . .,ld,. . .,lD]0 are intercepts of
latent variables (i.e., grand mean).

A structuralmodel for person parameters at level 2 (e.g., the student level) is as follows:

h2jk ¼ c0 þ c1 � h1jk þ
X
n¼ 1

cðnþ 1Þ � Zjk:n þ e2jk; ð3Þ

where Zjk.n(D 9 1) is the nth covariate for an individual j nested with a cluster k at level 2,

c0(D 9 1) = [c01,. . .,c0d,. . .,c0D]0 are intercepts at level 2 (fixed to 0s to identify the

model), c1(D 9 D) = diag[c11,. . .,c1d,. . .,c1D]0 are the effects of the pre-test score at level 2,
c(n + 1)(D 9 D) = diag[c(n + 1)1,. . .,c(n + 1)d,. . .,c(n + 1)D]

0 are the effects of covariates

Zjk.n, and ɛ2jk(D 9 1) = [ɛ2jk1,. . .,ɛ2jkd,. . .,ɛ2jkD]0 are residuals of post-test latent scores at

level 2, assumed to follow MN(0(D 9 1),Σ5(D 9 D)).

A structuralmodel for person parameters at level 3 (e.g., the teacher level) is as follows:

h2k ¼ d0 þ d1 � h1k þ d2 � TRTk þ
X
m¼ 1

dðmþ 2Þ � Zk:m þ e2k; ð4Þ

where TRTk(D 9 1) is a covariate of an intervention condition with a value of 0 for

members of the control group and a value of 1 for members of the treatment group, Zk.m

(D 9 1) is the mth covariate for a cluster k at level 3, d0(D 9 1) = [d01,. . .,d0d,. . .,d0D]0 are
intercepts at level 3 (i.e., grandmean), d1(D 9 D) = diag[d11,. . .,d1d,. . .,d1D]0 are the effects
of the pre-test score at level 3, d2(D 9 D) = diag[d21,. . .,d2d,. . .,d2D]0 are the intervention

effects at level 3, d(m + 2)(D 9 1) = [d(m + 2)1,. . .,d(m + 2)d,. . .,d(m + 2)D]
0 are the effects of

covariates Zk.m, and ɛ2k(D 9 1) = [ɛ2k1,. . .,ɛ2kd,. . .,ɛ2kD]0 are residuals of post-test latent

scores at level 3, assumed to follow ɛ2k(D 9 1) � MN(0(D 9 1),Σ6(D 9 D)).

Adding the two structural models (equations 3 and 4) to themeasurement model for a

post-test (equation 1), the model for correct item responses across domains
( y2jki = [y2jki1,. . .,y2jkid,. . .,y2jkiD]

0) leads to the following:

Pðy2jkiÞ ¼U½a2i � fðc0 þ c1 � h1jk þ
X
n¼ 1

cðnþ 1Þ � Zjk:n þ e2jkÞ

þ ðd0 þ d1 � h1k þ d2 � TRTk þ
X
m¼ 1

dðmþ2Þ � Zk:m þ e2kÞg � b2i�:
ð5Þ

To identify themodel, the c0 are set to 0s, and variances in Σ3(D 9 D) and Σ5(D 9 D) (i.e.,

variances at the student level for the pre-test and residual variances at the student level for

the post-test, respectively) are set to 1s. Alternatively, the item discrimination for one of

the items (e.g., the first item) in each dimension can be set to 1 instead of setting variances

to 1 to identify the scale unit of the parameters. Variances at the teacher level can be

estimated for the pre-test and post-test because the same item discriminations are used
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over levels (assuming no cluster bias). See the online supporting information (Appendix

S1) for a diagram depicting the MMIRM-MLC for person parameters with two domains.

2.1. Comparisons with other approaches to measurement error adjustment

Measurement error adjustment using the MMIRM-MLC is different from measurement

error adjustment methods in previous structural modelling approaches in which specific

assumptions are made about the distributional structure of the unobserved variables.

A description of those differences follows.

First, measurement error in the MMIRM-MLC is adjusted for a response variable and a

covariate simultaneously, as in Rabe-Hesketh et al. (2004) and Raudenbush and Sampson

(1999). Specifically, this simultaneous approach allows us to detect the group difference
on the error-free latent variable scale (i.e., the ability parameter in IRT is equal to an

(unbiased) estimator minus (random) error) at post-test, by controlling for the possible

measurement error in the pre-test scores and by mapping pre-test scores and post-test

scores on the latent variable scales. However, in previous studies, measurement error was

mainly adjusted for the response variable (e.g., Fox, 2004) or for the covariate (e.g.,

Battauz & Bellio, 2011; Carroll et al., 2006; Fox&Glas, 2003; Goldstein et al., 2008). That

is, in these previous applications, either a measurement model for the response variable

(e.g., equation 1 or a classical true scoremodel) or ameasurementmodel for the covariate
(e.g., equation 2 or a classical true score model) was used.

Second, a set ofmultiple items is used to correct formeasurement error in the covariate

using item responsemodels in theMMIRM-MLC (see equations 1 and 2). That is, the set of

multiple items at level 1 in the MMIRM-MLC is used for correcting for measurement error

at the individual level and at the cluster level. This approach is different from previous

approaches to correcting for measurement error in the covariate, including Carroll et al.

(2006) and Goldstein et al. (2008). These previous studies used a classical true score

model for total scores (only at the individual level).
Third, measurement error adjustment in the MMIRM-MLC is done at each level of the

multilevel data. Specifically, multiple items for each domain (indicated by d) aremodelled

for a latent variable at level 2 (h1jkd) and a latent variable at level 3 (h1kd) to correct for

measurement error in the pre-test scores. Further,multiple items for each domain are used

for a latent variable at level 2 (h2jkd) and a latent variable at level 3 (h2kd) to correct for

measurement error in the post-test scores. The group differences, the intervention effects

(d2 in equation 5), can bedetected on the error-free latent variable scale, h2kd. Raudenbush
and Sampson (1999) usedmultiple items at level 1 to measure constructs at level 2 within
level 3 as in the MMIRM-MLC. However, they did not include item discriminations at level

2 (such as a1i and a2i in the MMIRM-MLC) or regressions among the latent variables (such

as c1 and d1 in the MMIRM-MLC).

2.2. Measurement invariance test

In multiple-measurement (or longitudinal) multilevel data arising from multiple groups,

there are at least three sources of measurement invariance to test: across time, across
clusters, and across groups (e.g., control and treatment groups). The measurement

invariance assumption across time points is not necessary when a pre-test score is used as

a proxy variable for unobserved factors that predict or explain future attributes (e.g.,

Lockwood & McCaffrey, 2014). Further, it is possible that item discrimination(s) can be

different for an individual-level latent variable and for a cluster-level latent variable in
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multilevel item response models. This possibility, called cluster bias (Jak, Oort, & Dolan,

2013), can be investigated by testing whether item discriminations are equal over levels.

Finally, invariance across groups is necessary for comparing group means (Bejar, 1980).

Item response models to test cluster bias and group bias are described in the online
supporting information (Appendix S2).

Two models are compared to test cluster bias: (1) a cluster invariance model, in

which item discriminations over levels 2 and 3 are the same; and (2) a cluster bias model,

in which item discriminations over levels 2 and 3 are different. Three invariance models

are compared to investigate the measurement invariance across groups (e.g., Vanden-

berg & Lance, 2000; Widaman & Reise, 1997): (1) a configural invariance model, in

which all item parameters are estimated simultaneously in each group under the same

factor structures; (2) a weak invariance model, in which only discrimination parameters
are constrained to be equal across groups; and (3) a strong invariance model, in which all

item parameters are constrained to be equal across groups.

3. Parameter estimation and model evaluation

Bayesian analysis was chosen to fit MMIRM-MLCs and the (multigroup) multilevel
longitudinal item response model to test measurement invariance assumptions. In

(hierarchical) Bayesian analysis, it is possible to sample complex and high-dimensional

posterior densities with Markov chain Monte Carlo (MCMC) methods through sampling

from the conditional distributions of parameters without numerical integration. In this

study, WinBUGS 1.4.3 (Spiegelhalter, Thomas, Best, & Lunn, 2003) was used to

implement MCMC.

For the MMIRM-MLC, joint posterior distributions for parameters ϑ = {a1,a2,b1,b2,c0,
c1,c(n + 1)d,d0,d1,d(m+2),l,h1jk,h1k,ɛ2jk,ɛ2k,Σ3,Σ4,Σ5,Σ6} can be rewritten as

Pð0jy1jki; y2jkiÞ /Pðy1jkij0ÞPðy2jkij0Þ
� fPða1ÞPða2ÞPðb1ÞPðb2ÞPðc0ÞPðc1ÞPðcðnþ 1ÞÞPðd0ÞPðd1ÞPðdðmþ2ÞÞPðlÞg
� fPðh1jkj0;R3ÞPðh1kj0;R4ÞPðe2jkj0;R5ÞPðe2kj0;R6Þg
� fPðR3ÞPðR4ÞPðR5ÞPðR6Þg;

ð6Þ

where P( y1jki|ϑ) is a likelihood function of item responses across domains for pre-test,

P( y2jki|ϑ) is a likelihood function of item responses across domains for post-test, the

probabilities in the first braces indicate prior distributions of fixed parameters, the

probabilities in the second braces indicate prior distributions of latent variables, and

the probabilities in the third braces indicate hyperprior distributions of population

parameters of the latent variables. A similar specification was also applied to the

(multigroup)multilevel longitudinal item responsemodel to testmeasurement invariance
assumptions across clusters and groups.

Priors for all fixed effects in a structural model for person parameters (except c0 to

identify the model) and item difficulty parameters were set as N(0,0.1) in WinBUGS. Item

discrimination parameters were set to N(0,1) truncated at 0 4 for a1i and a2i, respectively,

4 The specification in WinBUGS is N(0,1)I(0,) where 1 is a variance.
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to have stable item discrimination parameter estimates (e.g., B�eguin & Glas, 2001, for the

normal ogive multidimensional item response model). To match the priors on Σ3(D 9 D)

and Σ5(D 9 D) with the model identification constraints, variances in the variance–
covariance matrix were set to 1 and the priors on correlation coefficient parameters were
set to Uniform(�1,1). Prior and hyperprior distributions for other parameters were

specified in WinBUGS as follows:

h1k � MNð0ðD� 1Þ;R4ðD�DÞÞ;
e2k � MNð0ðD� 1Þ;R6ðD�DÞÞ;

R4ðD�DÞ � WishartðR; mÞ;R ¼ ID; m ¼ D; and

R6ðD�DÞ � WishartðR; mÞ;R ¼ ID; m ¼ D:

ID denotes the unit matrix of size D, and the degrees of freedom m in the Wishart

distribution are set to D as the rank of h and ɛ to represent vague prior knowledge (the

mean and variance in the prior distribution on elements in Σ4(D 9 D) and Σ4(D 9 D) are 2

with R=ID). Similar priors and hyperpriors for fixed parameters and random effects were

chosen for item and person parameters of the (multigroup) multilevel longitudinal item

response model to test measurement invariance assumptions across clusters and groups.

In order to ensure that stable parameter estimates are obtained, Gelman and Rubin’s
(1992) method was chosen as implemented in WinBUGS. Using the results of the

convergence checking, initial samples are discarded (‘burn-in’) and posterior means or

medians and standard deviations (i.e., Bayesian standard errors) calculated from

subsequent iterations.

3.1. Bayesian model fit

Competing models (i.e., measurement invariance models, unidimensional vs. multidi-
mensional model) were compared using a relative fit criterion, the deviance information

criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002; see also Verhagen& Fox,

2013). A smaller DIC represents a better fit of themodel, and a difference of <5 or 10 units
between models does not provide sufficient evidence for favouring one model over

another (Spiegelhalter et al., 2003). TheDIC can be calculated easily by specifying the log-

likelihood along with a model specification in WinBUGS.

In addition, the adequacy of the fit of the MMIRM is evaluated by comparing observed

and posterior predictive score frequencies (e.g., B�eguin & Glas, 2001) with posterior
predictive model checking (Rubin, 1984). In addition to the overall model evaluation

using the posterior predictive frequencies, item fit and person fit were considered

individual checks. Standardized residuals (Spiegelhapter, Thomas, Best, & Gilks, 1996)

were considered as a discrepancy measure. Item fit was calculated as the mean of the

standardized residuals over persons, and person fit was calculated as the mean of the

standardized residuals over items. Posterior predictive p-values (ppp-values; Meng, 1994)

for the person fit (Glas & Meijer, 2003) and item fit (Sinharay, 2005) were calculated.

Values around .5 indicate that a person or an item fitswell to the datawhile values close to
zero or 1 indicate misfit (Gelman & Meng, 1996). We consider ppp-values smaller than

.025 or larger than .975 as extreme values indicative ofmisfit at the 5% level (e.g., Sinharay,

2005).
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4. Empirical illustration

Data for the current study were gathered as part of a larger efficacy trial for enhanced
anchored instruction (EAI). The experimental instruction was designed to improve the

mathematics skills of middle and high school students, especially those with learning

difficulties in maths (MD). The design of the efficacy trial was a pre-test–post-test cluster
randomized trial. Schools, rather than classes or students, were randomly assigned to EAI

and business as usual (BAU) because the research team did not have control over the

students’ class assignment. In this illustration, we evaluate an instructional intervention

called EAI and its impact on students by showing the effect of interventionusing anMMIRM-

MLC. Our purpose for conducting the analysis was to answer the following question: If the
intervention effect is detected, is it possible to interpret it across cognitive skill areas?

4.1. Teacher and student samples

Twenty-four urban and ruralmiddle schools in the southeasternUnited States participated

in the study. Half were randomly assigned to EAI and BAU. Each school had one

participating inclusive maths classroom, although one school had two participating

classrooms. Teachers in both conditions were comparable in terms of gender (mostly
female), ethnicity (mostly white), education level (well educated), and years of

experience (Bottge, Ma, Gassaway, Toland, Butler, & Cho, 2014). In our study, one

inclusive maths class from each school was sampled, with the exception of one school

that had two inclusive maths classes. Therefore, a two-level data structure (students

nested within 25 teachers) was used because there was only one school for which we

needed to be concerned about clustering at the school level. The smallest number of

students analysed for a teacher was 7, and the largest was 28. The average cluster size was

17.84.
Roughly equal numbers of students in each conditionhad an identifiedMD: 62 (28%) of

223 in EAI and72 (29%) of 248 in BAU.Of the initial sample, 25 students did not respond to

all items in the pre-test or post-test. As a result, 232 BAU (29%MD) and 214 EAI (26%MD)

remained in the final sample. Based on chi-square tests of equal proportions, students

were comparable across instructional conditions in gender, ethnicity, subsidized lunch,

and disability area, and teachers were comparable in both conditions in terms of gender

(mostly female), ethnicity (mostly white), education level (well educated), and years of

experience (Bottge et al., 2014). Bottge et al. (2014) found that therewas no EAI andBAU
group difference on the pre-test total score scales.

4.2. Measure: Fraction computation test

The researcher-developed test, the fraction computation test, administered at the pre-

test and post-test, was used in the current study to illustrate MMIRM-MLC. The test

comprised 20 items assessing students’ ability to manually add and subtract fractions.

Item features differed in several ways: (1) addition or subtraction; (2) like

denominators (1
4
þ 3

4
) or unlike denominators (8 2

9
þ 2 1

2
); (3) simple fractions

(3
8
þ 3

4
) or mixed numbers (4 1

16
þ 1

8
þ 1

2
); and (4) two stacks (3=4

1=2) or three stacks

(i.e., one more stack in the two-stack example). There were a total of 42 points on the

test. For 18 of the 20 items, students could earn 0, 1 or 2 points. On two items,

students could earn 3 points if they simplified the answer (i.e., revised the fraction to

simple terms). Inter-rater agreement was 99% on the pre-test and 97% on the post-test.
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Less than 1% of students in the sample received partial scores (i.e., score 1 for 18 of

the items and scores 1 or 2 for two of the items) on any of the items on the test. Thus,

in this paper, binary responses were considered, 1 for correct responses and 0 for

incorrect responses. Partial scores were also considered as incorrect responses. There
were no missing item responses in the final sample of 446 students for analysis.

4.3. Analysis and results

To answer the research question using the MMIRM-MLC, our analysis proceeded as

follows. All codes, including the model specification in WinBUGS used in the current

analyses, are available from the first author upon request.

4.3.1. Step 1: Determining distinct domains

As shown in Table 1, each item had four item attributes. In order to find the most distinct

item feature for domain scoring, we compared a set of exploratory factor analyses using

polychoric correlations with Bayes estimator (GIBBS(PX1) option) at each time point

Table 1. Fit Indices from Exploratory Factor Analyses Extracting 1 and 2 Factors and (GEOMIN

Rotated) Factor Loadings for a 2-Factor Solution.

Model fit

Pre-test Post-test

1-Factor 2-Factor 1-Factor 2-Factor

ppp-value 0.399 0.443 0.401 0.453

Factor loadings

Item

Attributes Pre-test Post-test

Operation Denominator Type Stacks Factor 1 Factor 2 Factor 1 Factor 2

1 Addition Like Simple 2 0.640 0.354 0.651 0.080

2 Addition Like Simple 2 0.610 0.216 0.678 0.201

3 Addition Unlike Simple 2 �0.135 1.048 �0.265 1.075
4 Addition Unlike Simple 2 �0.186 1.067 �0.231 1.029
5 Addition Unlike Simple 2 0.000 0.965 �0.189 1.024
6 Addition Unlike Simple 2 �0.026 0.985 �0.214 1.054
7 Addition Unlike Mixed 2 �0.132 1.034 0.007 0.940
8 Addition Unlike Mixed 2 0.041 0.912 0.087 0.900
9 Addition Unlike Mixed 2 0.007 0.946 0.062 0.930

10 Addition Unlike Mixed 2 0.032 0.939 0.007 0.924
11 Addition Unlike Simple 3 0.089 0.902 0.063 0.886
12 Addition Unlike Simple 3 0.092 0.902 0.052 0.921
13 Addition Unlike Mixed 3 0.065 0.901 0.084 0.916
14 Addition Unlike Mixed 3 0.004 0.924 0.005 0.924
15 Subtraction Like Simple 2 0.888 0.032 0.883 0.087
16 Subtraction Unlike Simple 2 0.137 0.871 0.160 0.851
17 Subtraction Like Mixed 2 0.804 0.097 0.731 0.085

18 Subtraction Unlike Mixed 2 0.456 0.698 0.002 0.752
19 Subtraction Unlike Mixed 2 0.235 0.772 0.212 0.804
20 Subtraction Unlike Mixed 2 0.397 0.557 0.096 0.737

Note. Bold factor loadings are significant at 5% level.
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using Mplus version 7.11 (Muth�en & Muth�en, 1998–2014). The model fit of the

exploratory factor analyses was evaluated based on posterior predictive model checking

with a summary measure of fit, the likelihood-ratio chi-square statistic. Corresponding

ppp-valueswere calculated for each factor solution; ppp-values around .5 indicate that the
observed pattern would likely be seen in replications of the data if the model were true.

Table 1 shows the model fit results at each time point for a one-factor and two-factor

solution and (GEOMIN rotated) factor loadings for a two-factor solution. According to the

ppp-values, the one-factor model provided a good fit to the data according to the criteria at

each time point. However, there was an improvement in model fit with the two-factor

model at each time point. Shifting from the one-factor to the two-factor model produced

noteworthy decreases in residual variances for four like items that loaded on the first

factor, especially at the post-test. Factor loadings were clearly clustered regarding like

items versus unlike items. As reported in Table 1, the like items (items 1, 2, 15 and 17)

were highly loaded on factor 1while theunlike itemswere highly loaded on factor 2 at the

pre-test and post-test. Moderate (GEOMIN) factor correlations of .585 and .497 for the pre-

test and post-test, respectively, indicated that two factors can provide two scores with

distinct meaning. Based on these results, we chose the two-factor model with a between-

item design where an item loaded on the like factor or unlike factor for domain scoring.

When there is evidence of a second dimension on a specific skill domain, having a two-

factor model yields diagnostic interpretations as compared to a one-factor model.

4.3.2. Step 2: Selecting the measurement model

Intraclass correlations (ICCs)were calculated to investigate themultilevel structure of the

data using the data at each time point. The ICC for the observed outcomes for each item

(e.g., Muth�en&Asparouhov, 2013) ranged from .058 to .297 for the pre-test and from .071

to .347 for the post-test, based on results of the two-parameter multilevel unidimensional

normal ogive model at each time point. A common rule of thumb is that ICCs over .05
indicate the necessity ofmultilevel analysis (e.g., Jak et al., 2013). According to the rule of

thumb, there is non-ignorable dependency due to clusters (teachers). Accordingly, the

MMIRM was chosen as a (multilevel) measurement model for the pre-test and post-test.

Table 2 reports summary information about the standard deviation (i.e., Bayesian

standard error) of h estimates fromMMIRM andwithin and between reliability of the total

scores (Geldhof, Preacher, & Zyphur, 2014) for each domain at pre-test and post-test. This

information presents evidence that there was non-ignorable measurement error on both

the latent variable scale and the total score scale.

4.3.3. Step 3: Checking measurement invariance

From step 1, a two-factor model was chosen to provide diagnostic interpretations based

on the specific skill domain, even though there is evidence that the one-factormodel fitted

relatively well compared to the two-factor model. For measurement invariance checking,

the one-factor model was estimated to check the measurement invariance over the

clusters (i.e., teachers) and groups (i.e., BAU vs. EAI, non-MD vs. MD).
Table S1 in the online supporting information presents themeasurementmodels, their

constraints, andDIC values for three invariancemodels for clusters and groups. The ‘burn-

in’ period ranged from 4,000 to 6,000 for invariance models in the MCMC analyses.

Posteriormeanswere used for calculating the DIC. Differences in the DIC values between

cluster bias and cluster invariance models were <5, so that the cluster invariance model
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was chosen as the simpler model. Given the cluster invariance model, group invariance

tests were investigated. Aweak invariancemodelwas chosen for BAU versus EAI and non-
MD versus MD.

Whether BAU and EAI or non-MD and MD can be scored and compared on the same

scale in the presence of weak invariance violation was checked by comparing the

correlations between the scores from the twoMMIRM-MLCmodels (without anymanifest

covariates) with weak invariance and strong invariance assumptions. The correlation

coefficients of the scores from the two MMIRM-MLCmodels for BAU and EAI and for non-

MD and MD were highly correlated (>.927). This indicates that the relative ordering of

persons’ scores did not change much when measurement weak invariance was ignored
for BAU and EAI or non-MD andMD. In addition, the results in the groupmean differences

(i.e., BAU and EAI or non-MD andMD)were similar between the twoMMIRM-MLCmodels

withweak invariance and strong invariance assumptions. Thus, in the following analysis, a

strong invariance model for BAU and EAI or non-MD and MD was assumed.

4.3.4. Step 4: Adding covariates to the measurement model and model evaluation

Now the MMIRM-MLC was fitted to answer the research question by adding an
intervention condition covariate to themeasurement model. Themodel is called MMIRM-

MLC model 1. MMIRM-MLC model 2 is MMIRM-MLC model 1 plus student-level and

teacher-level demographic information.

A burn-in of 4,000 iterations was used for all parameters of MMIRM-MLC models 1 and

2, based on Gelman and Rubin’s (1992) statistic with three chains. The 10,000 post-burn-

in iterations were obtained to calculate posterior moments. Monte Carlo errors for all

parameters in all analyses were less than about 5% of the sample standard deviation. All

95% posterior intervals included the observed data, which indicates that MMIRM-MLC
models 1 and 2 was appropriate for the data. The ppp-values for all items at pre-test and

post-test were between .025 and .075, indicating that the itemswere a good fit to the data.

In MMIRM-MLC model 1, there were 8% and 7% of persons with ppp-values >.075 for the

pre-test andpost-test, respectively, indicating amisfit in thismodel. InMMIRM-MLCmodel

Table 2. Measurement error information for IRT scale scores of MMIRM-MLC and for total scores

Pre-test Post-test

Like Unlike Like Unlike

IRT-based: Descriptive information for standard deviation of h estimates

Student level

Mean 0.80 0.49 0.71 0.45

SD 0.12 0.26 0.18 0.24

Min. 0.44 0.33 0.43 0.35

Max. 0.99 0.75 1.09 0.76

Teacher level

Mean 0.77 0.45 0.58 0.39

SD 0.06 0.07 0.05 0.07

Min. 0.61 0.62 0.48 0.31

Max. 0.83 0.78 0.63 0.52

Total score-based

Within reliability 0.43 0.69 0.50 0.70

Between reliability 0.56 0.69 0.51 0.74
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2, there were 8% and 6% of persons with ppp-values >.075 for the pre-test and post-test,

respectively. They all were at the lower end of the score distribution.

Table 3 shows the item parameter estimates of MMIRM-MLCmodel 1.5 Item parameter

estimates of MMIRM-MLC model 2 were similar to those of MMIRM-MLC model 1. At the
pre-test and post-test, items vary in terms of item discriminations and difficulties, and

items that have a like denominator were less discriminating and less difficult than items

that have an unlike denominator.

4.4. Answers to research question

Table 4 presents the results of MMIRM-MLC models 1 and 2 for person parameters. The

change in significance and magnitude of the intervention effect was small when other
demographic information for the students and teacherswas added toMMIRM-MLCmodels

1 and 2. For illustration purposes, the results of MMIRM-MLC model 2 with two student-

level covariates (MDandgender) and one teacher-level covariate (years of teaching special

education) are shown in Table 4. Covariates were coded as follows: BAU (coded as 0) and

EAI (coded as 1) groups, non-MD students (coded as 0) and MD students (coded as 1),

female students (coded as 0) and males students (coded as 1), and mean-centred years of

teaching general education (M = 11.1, SD = 7.7).

In Table 4, ‘L.TRT’ and ‘U.TRT’ represent the estimated difference between themeans
of the EAI and BAU post-test scores for a like domain and an unlike domain, respectively,

adjusted for the pre-test scores on the post-test scores. In MMIRM-MLC model 1, the pre-

test score effects on the like domain and theunlike domainwere statistically significant at

the student level and at the teacher level. Significant intervention effects were found for

like and unlike domains (i.e., 0.890, credible interval [CI] [0.506, 1.499], for the like

domain and 1.039, CI [0.601, 1.471], for the unlike domain). Specifically, the EAI group

performed 0.890 higher than the BAU group for the like domain and the EAI group

performed1.039higher than theBAUgroup for theunlikedomain. InMMIRM-MLCmodel
2, the effects of student-level and teacher-level covariates were not significant and the

effects of pre-test scores and the group difference between the EAI and BAU groups were

similar to those of MMIRM-MLC model 1.

4.5. Result comparisons across different approaches for measurement error treatment

An MMIRM with multilevel manifest covariate (MMC) and a multilevel model (MM,

specifically a multilevel multivariate random intercept model) with MLC were fitted to
the same empirical data to show the consequences of ignoring measurement error in a

covariate or a response variable. Measurement error in pre-test scores (covariate) is

ignored in the MMIRM-MLC, whereas measurement error in post-test scores (response

variable) is ignored in the MM-MLC. In the MMC of the MMIRM-MMC, pre-test total

scores (
PI

i¼1 y1jkid ¼ y1jk:d) were decomposed into within pre-test total scores

(y1jk.d�y1.k.d, where y1.k.d is a cluster mean) and between pre-test total scores (y1.k.d)

for each domain. For the multilevel (linear) model, post-test total scores

(
PI

i¼1 y2jkid ¼ y2jk:d) were used for each domain. In these two models, pre-test scores
and an intervention condition were considered covariates as in MMIRM-MLC model 1.

5 As shown in equations 1 and2, the itemparameters have an I 9 D vector.With a between-itemdesign, all items
have one set of item parameters for the dimension d. In the table, the item parameter estimates are presented in
one column for simplicity.
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The MMIRM-MLC and MM-MLC are specified in the online supporting information

(Appendix S3). WinBUGS was used to fit the MMIRM-MLC and MM-MLC with priors and

hyperpriors comparable to those used in MMIRM-MLCs.

Table 4 presents the results for the MMIRM-MLC and MM-MLC. Pre-test effects and
intervention effects were standardized on their relevant scale for comparison among the

three models, MMIRM-MLC model 1, MMIRM-MLC model 2 and MM-MLC. Table S2 in the

online supporting information shows the standardized estimates of the three models,

based on results presented in Table 4. Compared to the standardized effects of pre-test

scores inMMIRM-MLCmodel 1, pre-test effects were underestimated in theMMIRM-MMC

and MM-MLC. The effects of standardized intervention conditions were similar between

the MMIRM-MMC and MMIRM-MLC model 1. However, intervention effects were

underestimated in the MM-MLC.

5. Simulation study

A simulation study was designed to examine parameter recovery of the MMIRM-MLC

under Bayesian estimation using WinBUGS in various multilevel designs when the

population data-generating model is an MMIRM-MLC. In addition, the results of pre-test
effects and intervention condition effects were compared across the MMIRM-MLC,

MMIRM-MMC and MM-MLC to show the consequences of using total scores when the

population data-generating model is MMIRM-MLC model 1. WinBUGS was used to fit the

MMIRM-MLC andMMIRM-MMC (see the online supporting information [Appendix S3] for

a description of the MMIRM-MLC and MMIRM-MMC).

5.1. Simulation design
We selected simulation conditions that may affect the results of person parameters at the

cluster level, as has been found in the empirical research question (e.g., the effect of the

intervention effect) in previous research (e.g., L€udtke, Marsh, Robitzsch, & Trautwein,

2011; Preacher, Zhang, & Zyphur, 2011). The design includes the number of clusters and

the number of individuals per cluster. The number of clusters was set to K = 24, 50, or

100. A sample of 24 and 50 clusters is common in educational experimental intervention

research, as in our empirical illustration. Examples of large numbers of clusters include

national or international educational assessments such as the National Assessment of
Educational Progress and the Trends in International Mathematics and Science Study.

Accordingly, 100 clusters were chosen. Unlike in our empirical study, balanced cluster

sizes were considered to investigate the effect of cluster sizes, including nk = 5, 20, or 50,

as used in other multilevel studies (e.g., Preacher et al., 2011). A cluster size of 5 is found

in small group designs (e.g., Kenny, Mannetti, Pierro, Livi, & Kashy, 2002). Given a

selected number of clusters and number of individuals per cluster, the total number of

individuals results in nine different sample sizes, J = 120, 250, 480, 500, 1,000, 1,200,

2,000, 2,500, or 5,000. One hundred replications were simulated for each of the nine
different multilevel designs.

The same number of clusters were assigned to be either a control group or a treatment

group for a balanced design. As in the empirical study, a 20-item test with a between-item

design was considered: Four items for domain 1 and 16 items for domain 2. The item

parameter estimates andpersonparameter estimates, including an intervention effect that

we obtained in the empirical study, were considered as the true parameters of MMIRM-
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MLCmodel 1, as reported in Table 4. The ICC varied across items between .058 and .297 at

the pre-test and between .016 and .347 at the post-test.

5.2. Result hypotheses

The MMIRM-MLC was expected to yield the least bias because the population data-

generating model was the MMIRM-MLC. The effects of pre-test scores (c1 and d1) and the

effect of intervention (d2) are expected to be different, depending on the treatment of

measurement error in pre-test scores and post-test scores. In the presence of measure-

ment error in pre-test scores as in the MMIRM-MMC, the effects of pre-test scores are

expected to be biased (e.g., L€udtke et al., 2011). However, the effects of intervention

conditions are not expected to be biased in the presence of measurement error in pre-test
scores when there is no intervention effect at pre-test (Cho & Preacher, 2015). In the

presence ofmeasurement error in response variables as in theMM-MLC, both the effect of

pre-test scores and the effects of intervention can be biased (e.g., Fox, 2004).

5.3. Analysis

The same priors specified earlier were used in the MMIRM-MLC and comparable priors

and hyperpriors used in the MMIRM-MLC were used for the MMIRM-MLC and MM-MLC.
Gelman and Rubin’s (1992) statistic was used to evaluate convergence with three chains.

One replication of each condition was used for convergence checking. No convergence

problems were encountered in any replications for the MMIRM-MLC, except the sample

size condition nk = 5 and K = 24 (total sample size = 120). This non-convergence

problem may be because the sample size is too small to estimate 98 parameters (80 item

parameters (20 items 9 4 kinds), 10 structural parameters, and 8 variance or covariance

parameters). Only the converged results are reported below. Therewere no convergence

problems in the MMIRM-MMC or the MM-MLC. A burn-in of 5,000 iterations was used for
all parameters in the MMIRM-MLC, and a burn-in of 4,000 iterations was used for all

parameters in the MMIRM-MMC and MM-MLC. The same burn-in was set for the other

replications in each condition. An additional 6,000 iterations were obtained to estimate

the posterior moments in the MMIRM-MLC, MMIRM-MMC and MM-MLC. Monte Carlo

errors for all parameters were less than about 5% of the sample standard deviation in all

three models.

Percentage relative bias was calculated to show the accuracy of the parameter

estimates from the MMIRM-MLC, MMIRM-MMC and MM-MLC. It is given by
100 � ½ðbd � dÞ=d� as an example. Before calculating percentage relative bias, estimates

of the three models were standardized (see Table S2 in the online supporting information

for the calculation of standardized estimates of the three models based on the empirical

results in Table 4), as an example.

5.4. Simulation results

For the analysis of theMMIRM-MMC, intervention effects were first tested on pre-test total
scores by adding a covariate of an intervention condition to theMMCof theMMIRM-MMC.

No significant intervention effects were found in any conditions in the MMIRM-MMC,

based on a 95% CI test.

Table 5 presents the percentage relative bias for pre-test effects (c1 and d1) and

intervention effects (d2) for the MMIRM-MLC, MMIRM-MMC and MM-MLC. The following
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overall patterns in percentage relative biaswere observed, as reported inTable 5. First, the

percentage relative bias for pre-test effects was much lower for the MMIRM-MLC than for

the MMIRM-MMC and MM-MLC in all conditions, and it was lower for the MMIRM-MMC

than for the MM-MLC. For the pre-test effect estimate at the individual-level (bc1),
percentage relative bias ranged in magnitude from 0.3 to 18.6 in the MMIRM-MLC, from

�85.1 to �29.9 in the MMIRM-MMC and from �116.0 to �52.7 in the MM-MLC. For the

pre-test effect estimate at the cluster level (bd1), the percentage relative bias ranged in

magnitude from 0.3 to 15.8 in theMMIRM-MLC, from�70.8 to�19.1 in theMMIRM-MMC

and from �338.4 to �44.3 in the MM-MLC.

Second, the percentage relative bias for intervention effects was similar between the

MMIRM-MLC and MMIRM-MMC, except for the condition with K = 24 and nk = 5. The

percentage relative bias ranged in magnitude from �12.0 to 0.2 in the MMIRM-MLC and
from �14.6 to 0.9 in the MMIRM-MMC. However, the percentage relative bias for

intervention effects in theMM-MLCwasmuch larger than in theMMIRM-MLC andMMIRM-

MMC. It ranged in magnitude from �107.4 to �49.2.

Third, overall, the percentage relative bias decreased with increasing cluster size (nk)

and number of clusters (K) for pre-test effects (c1 and d1) and intervention effects (d2) in all

threemodels, although therewere three conditions that did not have that pattern:nk = 50

in the MMIRM-MMC for bd11, nk = 50 in the MM-MLC for bd11, and nk = 50 in the MM-MLC

for bd22.
Table 6 reports the percentage relative bias for fixed parameter estimates (for fixed

parameter estimates not reported in Table 5) and population parameter estimates of

random (residual) effects in the MMIRM-MLC. The degree of bias decreased as the cluster

size (nk) and number of clusters (K) increased for all parameter estimates. Unlike the item

parameters and population parameters of random (residual) effects, the bd0 in theMMIRM-

MLC tended to be underestimated when K and nk decreased.

6. Summary and discussion

This paper has specified the model for detecting the intervention effect when MMIRMs

were used for explicit measurement error modelling in the use of pre-test and post-test

scores. The main application of the MMIRM-MLC presented in this paper was to detect a

more diagnostic intervention effect by estimating the intervention effect for each domain.

In the empirical illustration, a four-step analysis was implemented for applying the
MMIRM-MLC to an instructional intervention study in a pre-test–post-test cluster

randomized trial.

In the simulation study, the accuracy of parameter estimates for the MMIRM-MLC was

investigated in variousmultilevel designs including a design similar to the empirical study.

Parameter accuracy for the all parameters was acceptable (with an acceptable bias

criterion set to 15%) in all conditions considered in this study for theMMIRM-MLC, except

for conditionswith a small cluster size (nk = 5).When using the total scores as a covariate

(i.e., pre-test scores) as in the MMIRM-MLC, unacceptable bias was found in pre-test
effects, whereas acceptable bias was found in intervention effects, except for a condition

with a small cluster size (nk = 5) and number of clusters (K=24). This finding indicates

that measurement error in a covariate may not be problematic in detecting intervention

effects onpost-testwhen there is no intervention effect onpre-test,which is often the case

in cluster randomized trials. On the other hand, in the presence of measurement error in

response variables (i.e., post-test scores), unacceptable bias can be found in both pre-test

effects and intervention effects.
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We now discuss the limitations of the current study and future work. First, the unique

application in the current study was to detect the intervention effect for each domain for

its diagnostic value. Sinharay (2010) showed that subscores should meet strict standards

of reliability, and thatweak correlation betweendomain scores has added value in terms of
mean square error in estimating the true subscore. Reliable subscores should be obtained

to make valid inferences about scores in the subtest domains. Lack of sufficient reliability

is a concern when there are a small number of items for a domain. For the current

application, a moderate correlation coefficient between two domain scores was found at

the student level (.691), and a small correlation coefficient was found at the teacher level

(.099). However, there were four items for the like domain and 16 items for the unlike

domain. Thus, the reliability of the subscore for the like domain can be questioned from a

value-added perspective.
Second, there were two main sources of measurement bias in the empirical study:

clusters and groups. We first tested cluster invariance and then tested the possibilities of

measurement invariance across the groups based on the results of the cluster invariance

test. It is important to note that this is not the only step for testing invariance. For example,

measurement invariance across groups can be tested first, and then cluster bias can be

investigated. Jak et al. (2013) stated that there is no universally optimal procedure inmost

situations, and different procedures generally identify the same items as being biased, but

the power to detect bias may vary. A comparison study with alternative procedures is
needed to determine the Type I error and power to detect measurement invariance in the

use of the DIC.

Third, the simulation study has the same limitations as other simulation studies, that is,

the conditions we considered are limited because the simulation study was mainly

designed to check the accuracy of parameter estimates in various multilevel designs. The

limited conditions include the true parameters and the ICC found from the empirical

study, the number of items for each domain, and the balanced design. More extensive

simulations that vary the limited conditions should be conducted to make solid
generalizations.

Fourth, one may think that a comparison among the MMIRM-MLC, MMIRM-MMC and

MM-MLC approaches is unfair when the population data-generating model is the MMIRM-

MLC. However, we chose the MMIRM-MLC as the population data-generating model for

two main reasons. First, our main interest in comparing the three models was to

investigate the extent to which pre-test effects on total scores or intervention effects on

total scores may produce misleading inferences on an error-free latent construct. In

addition, we were interested in the degree to which the MMIRM-MLC would outperform
the MMIRM-MMC and MM-MLC even though it may be obvious that the MMIRM-MLC

would perform better than the MMIRM-MMC and MM-MLC overall in this situation. Still,

therewas no guarantee that theMMIRM-MLCwould recover its ownparameterswell even

when the MMIRM-MLC was the population data-generating model. Indeed, the MMIRM-

MLCwould not converge while the MMIRM-MMCwould when the sample size was small

(K = 24 and nk = 5).

To conclude, the present study focused on the empirical illustration of the MMIRM-

MLC and its evaluations in using Bayesian analysis. Whenmeasurement error is a concern
in using a response variable and a covariate, the MMIRM-MLC can be an analytic tool for

detecting an intervention effect in pre-test–post-test cluster randomized trials. However,

given the results of the simulation study, the MMIRM-MLC can be used when both the

number of clusters and the cluster size are large enough.
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